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Abstract: 

Elevators are a critical component of modern urban infrastructure, 
ensuring the smooth functioning of buildings and transport systems. 
Traditional elevator maintenance systems often rely on periodic 
inspections or reactive repairs, which may not detect emerging issues 
early enough, potentially leading to costly downtimes, safety 
concerns, or prolonged disruptions. As the demand for efficiency and 
safety in building operations rises, the integration of Internet of 
Things (IoT) sensors and machine learning in predictive maintenance 
has emerged as a promising solution. This study explores how IoT- 
enabled vibration sensors, paired with data-driven analytics, can 
enhance the predictive capabilities of elevator maintenance systems. 
Elevator maintenance has historically relied on scheduled service 
checks and reactive repairs following system failures or user 
complaints. However, these traditional methods often fail to predict 
mechanical issues before they result in breakdowns. The advent of 
IoT technologies in the early 21st century has revolutionized many 
sectors, including elevator systems, by offering continuous 
monitoring capabilities. Vibration sensors, in particular, have proven 
to be valuable tools for detecting early signs of mechanical wear and 
tear, misalignment, or imbalance in elevator components such as 
motors, cables, and bearings. Despite the advantages of IoT-based 
monitoring, elevators still often experience unexpected failures due to 
the inability of traditional systems to detect subtle, early-stage 
mechanical problems. This research aims to address the gap by using 
vibration data collected from IoT sensors to predict maintenance 
needs and prevent failures before they occur. The problem lies in the 
complexity of vibration signals, which require advanced analysis to 
distinguish between normal operational vibrations and those 
indicative of potential faults. 
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1. INTRODUCTION 

 
Elevators are a critical component of modern urban infrastructure, 
ensuring the smooth functioning of buildings and transport systems. 
Traditional elevator maintenance systems often rely on periodic 
inspections or reactive repairs, which may not detect emerging issues 
early enough, potentially leading to costly downtimes, safety 
concerns, or prolonged disruptions. As the demand for efficiency and 
safety in building operations rises, the integration of Internet of 
Things (IoT) sensors and machine learning in predictive maintenance 
has emerged as a promising solution. This study explores how IoT- 
enabled vibration sensors, paired with data-driven analytics, can 
enhance the predictive capabilities of elevator maintenance systems. 
Elevator maintenance has historically relied on scheduled service 
checks and reactive repairs following system failures or user 
complaints. However, these traditional methods often fail to predict 
mechanical issues before they result in breakdowns. The advent of 

 
IoT technologies in the early 21st century has revolutionized many 
sectors, including elevator systems, by offering continuous 
monitoring capabilities. Vibration sensors, in particular, have proven 
to be valuable tools for detecting early signs of mechanical wear and 
tear, misalignment, or imbalance in elevator components such as 
motors, cables, and bearings. Despite the advantages of IoT-based 
monitoring, elevators still often experience unexpected failures due to 
the inability of traditional systems to detect subtle, early-stage 
mechanical problems. This research aims to address the gap by using 
vibration data collected from IoT sensors to predict maintenance 
needs and prevent failures before they occur. The problem lies in the 
complexity of vibration signals, which require advanced analysis to 
distinguish between normal operational vibrations and those 
indicative of potential faults. 

 

 

2. LITERATURE SURVEY 

Technological advancements in information technologies are 
progressively transforming our lives [1]. These changes demand an 
accelerated pace of management decision making [2,3]. As stated by 
the authors in [4], in the current scenario, producing an innovative 
product (or providing a service) that meets user requirements 
typically involves the integration of resources and competencies from 
multiple companies. The main finding from article [5] highlights the 
necessity for research and development in several crucial areas, 
including digital equipment maintenance and end-to-end automation, 
in order to enhance industries’ preparedness for future problems. 

Digital technologies and the Internet of Things (IoT) offer data 
homogeneity, distribution, editability, and the ability to self-reflect 
and reprogram, as stated in [6]. These features enable the 
implementation of multiple inheritance in distributed software 
applications, where no single owner possesses the entire design 
hierarchy or dictates the platform’s core. As a result, products 
become open to new uses after manufacturing, as they can be 
arbitrarily combined through standardized interfaces [7]. 

The concept of condition-based maintenance (CBM) of industrial 
equipment [8] allows the determination of maintenance requirements 
and offers numerous benefits. CBM improves equipment credibility 
and dependability, and reduces maintenance resource costs compared 
to a late-scheduled maintenance approach. Under the CBM approach, 
maintenance is carried out only when specific metrics indicate 
declining performance or faults. The main problem with CBM is the 
need to spend significant resources on implementing equipment 
condition-monitoring tools, which usually include such non-invasive 
methods as visual inspection, and measurement of power 
consumption, noise, temperature, and vibration. Paper [9] proposes 
an integrated framework, which takes a broad perspective on CBM 
implementation, and integrates technological, organizational, and 
user-related elements. This study contributes to the field of CBM 
with a comprehensive view of implementation challenges and 
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solutions in real-world implementations, from the original equipment 
manufacturer’s (OEM’s) point of view. Of the solutions proposed in 
article [10] for current research, we chose to prioritize the Use a 
state-of-the-art IoT platform for development; Define modular 
project-level software decisions; Outline methods for collaboration 
between hardware and software specialists. The authors of paper [11] 
emphasize the difference between Condition-based Maintenance 
(CBM) and Predictive-based Maintenance (PM) as two effective and 
complementary maintenance methods: CBM monitors the current 
condition; PM uses the CBM results to generate a future prediction 
for a machine. 

Digital IoT platforms and end-to-end automation allow us to 
overcome the substantial resource consumption of the CBM concept. 
Well-known publications [12,13] extensively explore the 
development of cost-effective hardware and software solutions for 
vibration diagnostics using microelectromechanical systems 
(MEMS). A platform-oriented approach creates new possibilities for 
equipment fault diagnosis and state forecasting. 

Smart sensors play a crucial role in CBM systems. According to the 
IEEE 1451.0-2007 standard [14], sensors with functions beyond the 
minimum required for measurements are classified as intelligent. 
Along with the digital interface and self-testing capabilities, these 
sensors have redundant functionality that simplifies their integration 
into networked applications. 

In various mechanical systems, vibration diagnostics are an essential 
method for assessing the condition of mechanical systems, holding 
significant importance across multiple fields of application. Vibration 
is a highly versatile parameter that considers almost all aspects of a 
unit’s state, allowing operating modes to determine the technical 
condition of the equipment. 

The accelerometer manufacturer establishes the output characteristics 
following extensive testing, typically encompassing the influence of 
various operating conditions, such as temperature changes and 
magnetic fields. Paper [15] proposes a method for estimating the 
thermal behavior of capacitive MEMS accelerometers and 
compensating for their drifts in order to reduce orientation and 
temperature effects. It is a necessary solution, but insufficient for 
solving the general problem of compensating for accelerometer errors 
during regular operation. 

The accelerometer metric of displacement at 0 g holds significant 
importance as it sets the baseline for measuring actual acceleration. 
Mounting the system with an accelerometer introduces additional 
measurement errors, which can arise due to stresses in the printed 
circuit board and the application of various compounds during 
mounting. As recommended in [16], we will calibrate after system 
assembly to exclude these errors. 

The ISO 16063 series standards [17] set the modern requirements for 
vibration sensors and their calibration methods. Usually, a MEMS 
accelerometer calibration involves averaging the measurement values 
using a calibration scheme, where the accelerometer system is 
positioned to have one axis, typically the Z axis, experiencing a 1 g 
gravitational field, while the other axes, X and Y, remain in a 
0 g field. After installation at a specific location, additional 
calibration is conducted by comparing the measurement results with 
those of a reference accelerometer [18]. 

 

 

3. PROPOSED METHODOLOGY 

This project focuses on developing a predictive maintenance system 
for machinery, with a specific emphasis on analyzing elevator 
components. The system leverages machine learning models trained 
on IoT sensor data (e.g., vibration levels) to predict mechanical 
performance metrics, such as revolutions of a component. By 
predicting these metrics, the project aims to identify potential issues 
before they lead to system failures, enhancing operational efficiency. 

Key Objectives 

1. Early Fault Detection: 

o Predict mechanical performance metrics (e.g., 
revolutions) using IoT sensor data. 

o Detect subtle signs of wear and tear before 
significant failures occur. 

2. Data-Driven Insights: 

o Analyze sensor data (e.g., vibration levels) to 
understand patterns associated with normal 
operation versus faults. 

o Provide actionable insights for maintenance 
teams. 

3. Efficiency Improvement: 

o Reduce unplanned downtime by transitioning 
from reactive to predictive maintenance. 

o Optimize maintenance schedules based on data- 
driven predictions. 

4. Model Deployment: 

o Build, train, and evaluate machine learning 
models capable of accurate predictions. 

o Deploy these models for real-time or batch 
predictions on new data. 

 

 

Figure 4.1: Proposed system Block Diagram 

Workflow 

1. Data Collection 

• Source: IoT sensors installed in elevator components. 

• Data: Includes features like vibration (and potentially other 
metrics such as temperature, pressure, etc.). 

• Target: revolutions (the performance metric to predict). 

2. Data Preprocessing 

• Handling Missing Values: 

o Replace missing vibration values with the mean 
of the column. 

• Feature Selection: 

o Separate the target variable (revolutions) from 
the features. 
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• Data Splitting: 

• Split the dataset into training (80%) and testing (20%) 
subsets. 

3. Exploratory Data Analysis (EDA): 

• Visualize relationships between features and the target 
variable. 

• Analyze patterns, distributions, and correlations. 

4. Model Selection and Training 

• Train multiple regression models to predict revolutions: 

1. Ridge Regression: A regularized linear 
regression model that prevents overfitting by 
adding an L2 penalty, improving generalization 
in predictive maintenance. 

2. Huber Regressor: A robust regression model 
that is less sensitive to outliers, making it suitable 
for handling noisy sensor data in predictive 
maintenance. 

Save trained models to disk for future use. 

5. Model Evaluation 

• Evaluate each model on test data using metrics: 

o Mean Absolute Error (MAE). 

o Mean Squared Error (MSE). 

o Root Mean Squared Error (RMSE). 

o R² Score. 

• Visualize model performance with scatter plots comparing 
actual vs. predicted values. 

6. Prediction 

• Load test data (new unseen data) and preprocess it. 

• Use the trained models to predict revolutions for the test 
dataset. 

• Append the predicted values to the test dataset for further 
analysis. 

7. Deployment and Integration 

• Store trained models for deployment in real-world systems. 

• Use predictions to optimize maintenance schedules and 
minimize downtime. 

Key Benefits 

• Proactive Maintenance: Reduces the risk of unexpected 
failures. 

• Cost Savings: Lowers maintenance costs by addressing 
issues early. 

• Improved Safety: Minimizes risks associated with 
equipment breakdowns. 

• Operational Efficiency: Ensures smooth operation of 
elevators with minimal disruptions. 

 

 
• Include additional features such as temperature, load, or 

operational duration. 

• Use advanced models like Gradient Boosting or Neural 
Networks. 

• Integrate real-time data streams for dynamic predictions. 

Model Building 

What is Huber Regressor? 

Huber Regressor is a robust regression model that combines the 
strengths of both linear regression and outlier-resistant techniques. It 
is particularly useful when dealing with datasets that contain outliers 
or noisy data. 

• Unlike ordinary least squares (OLS) regression, which 
minimizes squared errors and is highly sensitive to outliers, 
Huber Regressor minimizes a combination of squared and 
absolute errors based on a threshold value (delta). 

• For small errors, it behaves like linear regression 
(minimizing squared loss). 

• For large errors (outliers), it behaves like absolute error 
loss (reducing sensitivity to extreme values). 

• It is implemented in sklearn.linear_model.HuberRegressor. 

Advantages of Huber Regressor 

1. Robust to Outliers 

o Unlike standard linear regression, which is 
heavily influenced by extreme values, Huber 
Regressor reduces their impact. 

2. Balances Efficiency & Accuracy 

o It provides a good trade-off between mean 
squared error (MSE) and mean absolute error 
(MAE), ensuring more stable predictions. 

3. Works Well with Noisy Sensor Data 

o Ideal for IoT-based predictive maintenance, 
where sensor readings might contain fluctuations 
or anomalies. 

4. Improves Generalization 

o Regularization helps prevent overfitting, making 
the model more adaptable to unseen data. 

5. Faster than Other Robust Models 

o Compared to methods like RANSAC or Theil- 
S e n e s t i m a t o r s , H u b e r R e g r e s s i o n i s 
computationally efficient. 

How Huber Regressor is Used in Our Project? 

In our IoT-based predictive maintenance system for elevators, Huber 
Regressor is used to predict the number of revolutions based on 
sensor data (vibration, temperature, current, etc.). 

• Why Huber Regression? 

o Elevator sensor data can have spikes or 
anomalies due to sudden load changes, 
mechanical faults, or environmental conditions. 

o Huber Regressor helps in making stable and 
accurate predictions by reducing the influence of 
extreme sensor readings. 



IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501 

Vol.15, Issue No 2, 2025 

 

 

 
 

872  

 
• Implementation in Our Project 

o It takes the training features (X_train) and the 
target variable (y_train) and fits a regression 
model that is resilient to outliers. 

o Predictions are made on X_test, and metrics like 
MAE, MSE, RMSE, and R² score are used to 
evaluate performance. 

o It helps in determining when an elevator might 
require maintenance, ensuring proactive fault 
detection. 

 

 

4. EXPERIMENTAL ANALYSIS 

The project is a well-structured implementation of a predictive 

maintenance system. It demonstrates how to process data, train 
machine learning models, evaluate their performance, and make 
predictions. Below is a detailed breakdown of each section of the 
code: 

1. Library Import and Setup 

• Purpose: Import necessary libraries for data handling, 
machine learning, and visualization. 

• Key Libraries: 

o pandas and numpy: Handle data processing and 
numerical operations. 

o matplotlib and seaborn: For data visualization 
and plotting. 

o joblib: Save and load machine learning models 
to/from files. 

o sklearn: Provides tools for model development 
and performance evaluation. 

• Warnings: Suppressed to ensure clean output. 

• Purpose: Evaluate the performance of regression models 
using several metrics: 

o Mean Absolute Error (MAE): Average absolute 
difference between predicted and actual values. 

o Mean Squared Error (MSE): Average squared 
difference between predicted and actual values. 

o Root Mean Squared Error (RMSE): Square 
root of MSE, easier to interpret as it’s in the same 
unit as the target. 

o R² Score: Indicates how much of the target 
variance the model explains (ranges from 0 to 1). 

• Visualization: 

o Scatter plot of actual vs. predicted values. 

o A diagonal line represents perfect predictions. 

5. Model Training and Evaluation 

The code implements two regression models to predict elevator 
revolutions based on sensor data: 

Huber Regressor 

• Checks if a pre-trained model (huber_regressor.pkl) 

exists: 

o If yes, loads the model and evaluates it. 

o If not, trains a new Huber Regressor, saves it, and 
evaluates its performance. 

• Robustness: 

o Huber Regressor is robust to outliers and handles 
noisy sensor data well. 

• Predictions and Performance Evaluation: 

o Uses the defined regression metrics function to 
assess accuracy. 

2. Data Loading and Preprocessing 

• Loading Data: Reads the dataset (predictive-maintenance- 
dataset.csv) into a Pandas DataFrame. 

• Basic Operations: 

o Display the first and last few rows (head() and 
tail()). 

o Check for missing values (isnull().sum()) and fill 
them (using the mean of the vibration column). 

o Check for duplicate rows and remove them if 
found. 

o Inspect the dataset’s structure info() and 
summary statistics describe(). 

Result Description  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure : Sample Dataset 

3. Data Splitting 

• Purpose: Split data into training and testing sets using 
train_test_split: 

o X_train and y_train: Used to train the model. 

o X_test and y_test: Used to evaluate the model. 

• The test size is set to 20%, and a random seed 
(random_state=42) ensures reproducibility. 

4. Regression Metrics Function 
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Figure: Heat map for column importance 

 

 

Figure 7.3.3: Displaying the regression report of Huber model 

 

 

Figure : Illustration of confusion matrix obtained using Huber model. 

 

 

5. CONCLUSION 

The predictive maintenance system for elevators, leveraging IoT 
sensor data and machine learning models, marks a significant 
advancement over traditional maintenance approaches. By analyzing 
critical parameters such as vibrations and revolutions, this system 
enables early detection of potential failures, transitioning from 
reactive and scheduled maintenance to a proactive, data-driven 
approach. The implementation of models like Huber Regressor has 
demonstrated the capability to provide accurate predictions, reducing 
unplanned downtime, enhancing safety, and optimizing operational 
costs. 

This project highlights the importance of integrating IoT and machine 
learning technologies into maintenance workflows. The adoption of 
predictive maintenance not only extends the lifespan of elevator 
components but also ensures their consistent performance in high- 
demand environments. Additionally, the system aligns with global 
sustainability goals by reducing energy consumption, minimizing 
material waste, and improving resource efficiency.The scalability and 
flexibility of the proposed solution allow its application across 
various industries, including manufacturing, transportation, and 
healthcare, making it a valuable contribution to the broader field of 
smart maintenance systems. 
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